

A GUIDE TO ACIDS, ACID STRENGTH, AND CONCENTRATION

What's the difference between acid strength and concentration? And how does pH fit in with these? This graphic explains the basics.

HYDROCHLORIC ACID

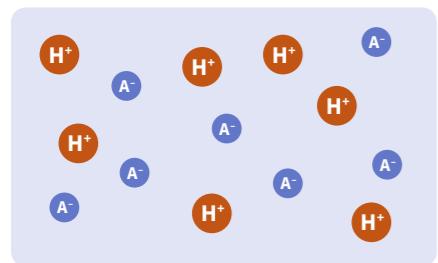
SULFURIC ACID

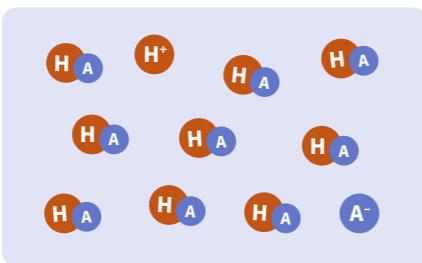
NITRIC ACID

PHOSPHORIC ACID

HYDROFLUORIC ACID

ETHANOIC ACID


CARBONIC ACID


STRONG ACIDS VS. WEAK ACIDS

The H⁺ ion is transferred to a water molecule, forming H₃O⁺

STRONG ACID

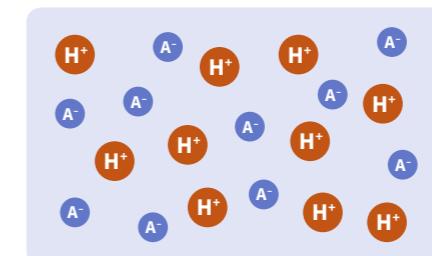
WEAK ACID

H⁺ Hydrogen ions A⁻ Negative ions H_A Acid molecules

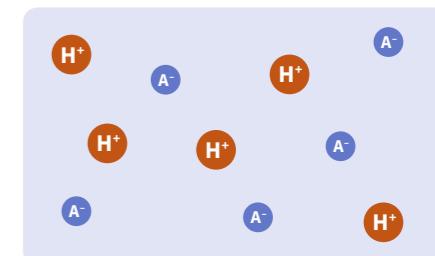
Acids react with water when they are added to it, forming ions. The degree to which they do this is what determines whether they are strong or weak acids. Strong acids are essentially 100% ionised in solution. Weak acids ionise very little in solution.

ACIDS, K_a AND pK_a

$$K_a = \frac{[H^+] [A^-]}{[HA]} \quad pK_a = -\log_{10} [K_a]$$


	K _a	pK _a
VERY STRONG ACID	>0.1	<1
FAIRLY STRONG ACID	10 ⁻³ –0.1	1–3
WEAK ACID	10 ⁻⁵ –10 ⁻³	3–5
VERY WEAK ACID	10 ⁻¹⁵ –10 ⁻⁵	5–15
EXTREMELY WEAK ACID	<10 ⁻¹⁵	>15

The acid dissociation constant, K_a, is a measure of the strength of an acid. The higher its value, the stronger the acid (i.e. the more readily it ionises in water). pK_a converts K_a number to a logarithmic scale that makes it easier to compare strengths of different acids.


CONCENTRATION AND pH

A decrease of one on the pH scale represents a tenfold increase in H⁺ concentration.

CONCENTRATED ACID

DILUTE ACID

H⁺ Hydrogen ions A⁻ Negative ions

Concentration is distinct from strength. It refers to the amount of acid in a given solution. A concentrated acid contains a large amount of acid in a given volume; a dilute solution contains a small amount. The pH scale gauges the amount of hydrogen ions in solution.

